Carbon Fiber (CFRP) Trimming and Cutting for the Manufacturing Industry

November 18, 2017

Industrial Mechanical

Comments Off on Carbon Fiber (CFRP) Trimming and Cutting for the Manufacturing Industry


What is CFRP?

CFRP (Carbon Fiber Reinforced Plastic) is an advanced light weight composite material made up of carbon fiber and thermosetting resins.

Machining Carbon Fiber for Post Processing

Machining carbon fiber – post processing is the final phase and once complete, the CFRP part is ready to be put into assembly. In post processing, carbon fiber trimming removes excess material if needed and cutting carbon fiber is used to machine part features into CFRP. Using a robotic waterjet or robotic router- unrivaled accuracy and speed using robotics for CFRP post process trimming, and laser software and router software technology can make all the difference.

Robotic carbon fiber trimming systems are easy to use, easy to maintain and easy to recover. Learning Path Control (LPC), and Learning Vibration Control (LVC) combined with Adaptive Process Control (APC) technologies supercharge the speed of the robotic trimming up to 60% beyond what is possible out of the box. Accufind and iRCalibration are technologies that use IR and CCD vision technology to keep pinpoint path accuracy while maintaining high speed cutting of the CFRP.

Waterjet, dry router and wet router technologies can all be suitable for carbon fiber trimming or cutting carbon fiber depending on the properties of the part and the production requirements. A variety of studies and tests are available to find the most optimal carbon fiber cutting solution for the specific CFRP part.

The Fiber in CFRP

CFRP starts as an acrylonitrile plastic powder which gets mixed with another plastic, like methyl acrylate or methyl methacrylate. Then, it is combined with a catalyst in a conventional suspension or solution polymerization reaction to form a polyacrylonitrile plastic.

The plastic is then spun into fibers using one of several different methods. In some methods, the plastic is mixed with certain chemicals and pumped through tiny jets into a chemical bath or quench chamber where the plastic coagulates and solidifies into fibers. This is similar to the process used to form polyacrylic textile fibers. In other methods, the plastic mixture is heated and pumped through tiny jets into a chamber where the solvents evaporate leaving a solid fiber. The spinning step is important because the internal atomic structure of the fiber is formed during this process.

Then the fibers are washed and stretched to the desired fiber diameter. The stretching helps align the molecules within the fiber and provide the basis for the formation of the tightly bonded carbon crystals after carbonization. Before the fibers can be carbonized they must be chemically altered to change their linear atomic bonding to more stable ladder bonding. To do this, the fibers need to be heated in air to around 380-600 F for an hour or so. This makes the fibers pick up oxygen molecules and rearrange the atomic bonding structure. Once this process is complete the fibers will be stabilized.

Once the fibers are stable, the carbonization process begins. The fibers are heated to 1800F to 5300F for a few minutes in a furnace filled with a gas mixture and no oxygen. A lack of oxygen prevents the fibers from catching fire at the high temperatures required for this step. The oxygen is kept out by an air seal where the fibers enter and exit the furnace and keeping the gas pressure inside the furnace higher than the outside air pressure. While the fibers are heated they start to lose their non-carbon atoms in the forms of gasses like water vapor, ammonia, hydrogen, carbon dioxide, nitrogen and carbon monoxide.

As the non-carbon atoms are removed, the remaining carbon atoms start to form tightly bonded carbon crystals that align parallel to the long side of the fiber. After this carbonization process is finished, the fibers will possess a surface that does not bond well. In order to give the fibers better bonding properties their surface needs to be oxidized, giving the fibers a rough texture and increasing their mechanical bonding ability.

Next is the sizing process. For this the fibers are coated with a material such as epoxy or urethane. This protects the fibers from damage in the winding and weaving phase. Once the fibers are coated they’re spun into cylinders called bobbins. The bobbins are then put in a machine that twists the fibers into yarns. Those yarns can then be used to weave a carbon fiber filament fabric.

Pre-Process

In the next step a lightweight, strong durable skin is created using a process called overlay. In this process carbon fiber fabric is laid over a mold and combined with resin to create its final shape. There are two methods that can be used to for the overlay process. The first is called “wet carbon fiber layup”. For this process a dry carbon fiber sheet is laid over the mold and wet resin is applied to it. The resin gives the carbon fiber stiffness and acts as a bonding agent. The second process is called “pre-preg carbon fiber lay up”. This process uses fiber that is impregnated with resign. Pre-preg lay up provides much more uniform resin thickness than the wet lay up method due to superior resin penetration in the carbon fiber. There’s also Resin Transfer Molding (RTM)- which takes place in the next step but combines the molding step and preform carbon fiber resin transfer step into one process; more on RTM below.

Molding CFRP

Now that the CFRP prepared for forming, it’s time to mold it into a permanent shape. There are variety of techniques that can be used for the molding process. The most popular is compression molding. Compression molding involves two metal dies mounted in a hydraulic molding press. The CFRP material is taken out of the lay up and placed into the molding press. The dies are then heated and closed on the CFRP and up to 2000psi of pressure is applied. Cycle time can vary depending on part size and thickness.

Recent breakthroughs such as BMW’s “wet compression molding” process have dramatically decreased compression mold cycle time. Resin transfer molding or “RTM” is another commonly used molding technique. Like compression molding, it features dies mounted in a press that close on the preform CFRP. Unlike compression molding, resin and catalyst are pumped into the closed mold during the molding process through injection ports in the die. Both the mold and resin may be heated during RTM depending on the specific application. RTM can be preferable to other molding methods because it reduces the steps to create CFRP by combining some of the tradition preform phase steps into the molding phase.

Advanced Rice Blending Solutions

November 18, 2017

Industrial Mechanical

Comments Off on Advanced Rice Blending Solutions


Rice milling refers to the process of removing the hulls and brans from the raw paddy grains and thus producing polished rice. Rice is a crop that is rich in genetic diversity, having a thousand of variants grown worldwide. It is one of the most consumed cereals worldwide. Today, this grain is helping 2/3 of the total world population to sustain. It is life for thousands of people and is also deeply engaged in the heritage of several countries and societies including south Asian countries. About four-fifths of the world’s rice is produced by the small-scale farmers and is consumed locally.

Milling refers to the process in which the grains are transformed in the suitable human consumption, and thus, it has to be done with utmost care to prevent the breaking of kernels and improving recovery. Rice grains also called as grains, consist of brown rice and husk. Brown rice, in turn, consists of bran comprising the outer layer and the edible portion.

The extent of the recovery during the milling process is dependent on several factors like the degree of milling required, a variety of paddy, quality of equipment used, the operator, etc. As and when the countries reach the self-sufficiency state of rice production, the demand of the consumer to get a better quality of rice increases. The quality of rice is hard to define in terms as it rests on the intended user and consumer of the grains.

The grain quality is not only proportional to the variety of rice, but also in the environment of production of crop, harvesting, processing as well as milling system.

The last step in the modern milling process is removing the broken rice grains from the milled rice with the help of blender machines. The screen separators and the sifters are used to separate the small broken rice, also known as brewer rice from the complete and large broken. Sifting also removes germs and brand and are present in the milled rice, even after the process of polishing and whitening.

The large broken and whole grains are either bagged for the customer delivery or are further processed through the length graders. From millers catering to the high end or export market, the length graders and the blending stations are used. The length grading process separates the broken rice from the large broken. Further, the rice blender helps in mixing the head rice and broken in right proportion as per the specification of the grade standards. For example, the premium grade rice in some countries allows for 95% head rice and 5% broken.

In usual rice-growing countries, the milled rice is marketed in bags, and thus, bagging stations form an integral part of the modern rice mill. The size of the bags is dependent on the requirements of the customers or suggestions made by rice mill consultants. The larger rice mills catering to the supermarket, milled rice are packaged in plastic packs of 2, 5, 10 and 20kg, and packaging is fully mechanized.

Blending station: – The rice blending solutions allows the mixing of the head and broken rice in the right proportion, as per the specifications of the grading standards.

5 Pointers for Comparing Printed Circuit Board Manufacturers

November 18, 2017

Industrial Mechanical

Comments Off on 5 Pointers for Comparing Printed Circuit Board Manufacturers


Printed circuit boards (PCBs) are extremely important and relevant in the electronics and appliance industries. A PCB collects the electronic elements of a product using conductive products that are usually etched on a “non-conductive” substrate. Naturally, PCBs are used extensively in production of many products, including regular consumer goods. All kinds of active devices and components, including resisters and capacitors, are usually soldered to the board.

If you are looking to place an order for your business and want to find a reliable printed circuit board manufacturer, there are a few aspects that you need to note.

1. First things first, check if the manufacturer is well known in the industry. Ask relevant questions like – How long have you been in business? Who are your clients? How many batches or orders do you handle each month? Can you share a few references? A company that has been around for a long time will never shy away from offering references. They will also do what it takes to convince their new and prospective clients. You can also check their website to find a few more relevant details.

2. Check the prices. Don’t be surprised, there are reliable manufactures who can offer low-priced circuit boards without compromising on the quality. They also ensure fast and quick delivery for their clients on request. However, be careful when you choose a service, because there are a few quality standards that must be met. Check if the concerned company has the required certifications, which can vary in some countries.

3. Know their clients. As mentioned earlier, you need to know the industries and clients that a company services. Check if they have worked for the military and some of the other bodies of the government. If they have supplied their products to known firms and electronic companies, it is like an assurance that they will never ever fool around with the quality. If you get references, call a few of them or write an email asking about their experiences.

4. Do not ignore customer service, it is extremely important when ordering PCBs. You need a manufacturer who is around to take questions or concerns and handle them quickly and accurately. It is important to be careful about customer service and whereabouts of the company, because some of them are just brokers and are making money by selling low-quality PCBs to customers.

5. Can they handle specific requirements? PCB requirements can vary, and you need a team that has the capacities to meet different production needs. They must be willing to take up production challenges, and it is not enough to claim things, unless they prove things. You can place a small order for custom PCBs to know more about their commitment towards customization, timely delivery and pricing.

Printed circuit boards (PCBs) are extremely important and relevant in the electronics and appliance industries. A PCB collects the electronic elements of a product using conductive products that are usually etched on a “non-conductive” substrate. Naturally, PCBs are used extensively in production of many products, including regular consumer goods. All kinds of active devices and components, including resisters and capacitors, are usually soldered to the board.

If you are looking to place an order for your business and want to find a reliable printed circuit board manufacturer, there are a few aspects that you need to note.

1. First things first, check if the manufacturer is well known in the industry. Ask relevant questions like – How long have you been in business? Who are your clients? How many batches or orders do you handle each month? Can you share a few references? A company that has been around for a long time will never shy away from offering references. They will also do what it takes to convince their new and prospective clients. You can also check their website to find a few more relevant details.

2. Check the prices. Don’t be surprised, there are reliable manufactures who can offer low-priced circuit boards without compromising on the quality. They also ensure fast and quick delivery for their clients on request. However, be careful when you choose a service, because there are a few quality standards that must be met. Check if the concerned company has the required certifications, which can vary in some countries.

3. Know their clients. As mentioned earlier, you need to know the industries and clients that a company services. Check if they have worked for the military and some of the other bodies of the government. If they have supplied their products to known firms and electronic companies, it is like an assurance that they will never ever fool around with the quality. If you get references, call a few of them or write an email asking about their experiences.

4. Do not ignore customer service, it is extremely important when ordering PCBs. You need a manufacturer who is around to take questions or concerns and handle them quickly and accurately. It is important to be careful about customer service and whereabouts of the company, because some of them are just brokers and are making money by selling low-quality PCBs to customers.

5. Can they handle specific requirements? PCB requirements can vary, and you need a team that has the capacities to meet different production needs. They must be willing to take up production challenges, and it is not enough to claim things, unless they prove things. You can place a small order for custom PCBs to know more about their commitment towards customization, timely delivery and pricing.

Lastly, do check with the concerned manufacturer if they have the time to work on specific projects, especially if your company is involved in innovative productions.